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2-COLORINGS CAN CONTAIN GRAPHS

Graph Two-coloring

2

1 3

4 is contained in 1

2 4

3

5

n = 4 n = 5



RAMSEY NUMBERS

Definition
The Ramsey number R(G) of a graph G is the first n such that
all 2-colorings on n vertices contain G.

Example: R(
a
) = 6.

I All 2-colorings on ≥ 6 vertices contain
a

.
I Not all 2-colorings on 5 vertices do:
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RAMSEY NUMBERS ARE STUDIED EXTENSIVELY

Two natural directions of study:

1. Results for classes of graphs
Example: For odd n, R(n vertex cycle) = 2n − 1.

2. Results for specific small graphs
Example: R(diamond graph) = 10
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ORDERED GRAPHS AND 2-COLORINGS ON n VERTICES

Ordered graph Ordered two-coloring
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ORDERED 2-COLORINGS CAN CONTAIN ORDERED

GRAPHS
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ORDERED RAMSEY NUMBERS

Definition
The ordered Ramsey number R<(G) of an ordered graph G is
the first n such that all ordered 2-colorings on n vertices contain
G.

Example: R<(1 — 2 — 3) = 5.

I All ordered 2-colorings on ≥ 5 vertices contain 1 — 2 — 3.
I Not all ordered 2-colorings on 4 vertices do:
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ORDERED RAMSEY NUMBERS ARE RELATIVELY NEW

Two natural directions of study:

1. Results for classes of graphs
Example: There exists constant c such that for all ordered
graphs H on n vertices,

R<(H) ≤ R(H)c log2 n.

2. Our Research Goal: Results for specific small graphs
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OUR RESEARCH

We want to find the ordered Ramsey number of the standard
ordering of the diamond graph (DG).
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WORK TOWARDS UPPER BOUND
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SINGLE-VERTEX ANCHORING

Upper bound proofs for unordered Ramsey numbers often
center around a particular vertex.

Example: R(
a
) ≤ 6
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AN IDEA FOR ORDERED RAMSEY NUMBERS:
TWO-VERTEX ANCHORING

To get bounds for ordered Ramsey numbers, we anchor our
proofs at two vertices.



A LOWER BOUND

Theorem

R<(DG) ≥ 12
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USING A COMPUTER TO GET A LOWER BOUND

First, build a skeleton using two-vertex anchoring
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USING A COMPUTER TO GET A LOWER BOUND
Next, fill in the rest of the two-coloring by force.

Theorem

R<(DG) ≥ 12
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FUTURE WORK

I Tighten bounds and extend upper bounds to full ordering
of DG.

I Find ordered Ramsey numbers of other small graphs.
I Find asymptotic growth rate of ordered Ramsey numbers

of Pk
n, an important family of ordered graphs whose

smallest interesting member is DG.
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