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RAMSEY NUMBERS ARE STUDIED EXTENSIVELY

Two natural directions of study:



RAMSEY NUMBERS ARE STUDIED EXTENSIVELY

Two natural directions of study:

1. Results for classes of graphs
Example: For odd n, R(n vertex cycle) = 2n — 1.



RAMSEY NUMBERS ARE STUDIED EXTENSIVELY

Two natural directions of study:

1. Results for classes of graphs
Example: For odd n, R(n vertex cycle) = 2n — 1.

2. Results for specific small graphs
Example: R(diamond graph) = 10



ORDERED GRAPHS AND 2-COLORINGS ON #n VERTICES
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ORDERED 2-COLORINGS CAN CONTAIN ORDERED
GRAPHS
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ORDERED RAMSEY NUMBERS

The ordered Ramsey number R (G) of an ordered graph G is
the first n such that all ordered 2-colorings on n vertices contain
G.

Example: R.(1—2—3) =5.




ORDERED RAMSEY NUMBERS

The ordered Ramsey number R (G) of an ordered graph G is
the first n such that all ordered 2-colorings on n vertices contain
G.

Example: R.(1—2—3) =5.
» All ordered 2-colorings on > 5 vertices contain 1 — 2 — 3.




ORDERED RAMSEY NUMBERS

Definition
The ordered Ramsey number R (G) of an ordered graph G is

the first n such that all ordered 2-colorings on 1 vertices contain
G.

Example: R.(1—2—3) =5.
» All ordered 2-colorings on > 5 vertices contain 1 — 2 — 3.

» Not all ordered 2-colorings on 4 vertices do:
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ORDERED RAMSEY NUMBERS ARE RELATIVELY NEW

Two natural directions of study:

1. Results for classes of graphs
Example: There exists constant c such that for all ordered
graphs H on n vertices,

Ro(H) < R(H) 18",

2. Our Research Goal: Results for specific small graphs



OUR RESEARCH

We want to find the ordered Ramsey number of the standard
ordering of the diamond graph (DG).
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WORK TOWARDS UPPER BOUND

Theorem
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SINGLE-VERTEX ANCHORING

Upper bound proofs for unordered Ramsey numbers often
center around a particular vertex.
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SINGLE-VERTEX ANCHORING

Upper bound proofs for unordered Ramsey numbers often
center around a particular vertex.

Example: R(A\) <6




AN IDEA FOR ORDERED RAMSEY NUMBERS:
TWO-VERTEX ANCHORING

To get bounds for ordered Ramsey numbers, we anchor our
proofs at two vertices.
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A LOWER BOUND

Theorem

R.(DG) > 12




USING A COMPUTER TO GET A LOWER BOUND

First, build a skeleton using two-vertex anchoring
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USING A COMPUTER TO GET A LOWER BOUND

First, build a skeleton using two-vertex anchoring

1




USING A COMPUTER TO GET A LOWER BOUND

Next, fill in the rest of the two-coloring by force.

Theorem




FUTURE WORK

» Tighten bounds and extend upper bounds to full ordering
of DG.
» Find ordered Ramsey numbers of other small graphs.

» Find asymptotic growth rate of ordered Ramsey numbers
of P, an important family of ordered graphs whose
smallest interesting member is DG.
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